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Abstract
We consider the problem of constructing an action functional for physical
systems whose classical equations of motion cannot be directly identified with
Euler–Lagrange equations for an action principle. Two ways of constructing
the action principle are presented. From simple consideration, we derive the
necessary and sufficient conditions for the existence of a multiplier matrix
which can endow a prescribed set of second-order differential equations with
the structure of the Euler–Lagrange equations. An explicit form of the action
is constructed if such a multiplier exists. If a given set of differential equations
cannot be derived from an action principle, one can reformulate such a set
in an equivalent first-order form which can always be treated as the Euler–
Lagrange equations of a certain action. We construct such an action explicitly.
There exists an ambiguity (not reduced to a total time derivative) in associating
a Lagrange function with a given set of equations. We present a complete
description of this ambiguity. The general procedure is illustrated by several
examples.

PACS numbers: 02.30.Zz, 02.30.Xx, 02.30.Hq

1. Introduction

The problem of constructing an action functional for a given set of differential equations is
known in the literature as the inverse problem of the calculus of variations for Newtonian
mechanics. In its classical setting [1] it consists of solving the variational equation

δS[q]

δqi(t)
= gi, (1)

where gi(t, q
i, q̇i , . . .) = 0 is some given system of differential equations with respect to

unknown functions qi(t), and S[q] is a local functional to be determined. The condition
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of locality requires the existence of a function L(t, q, q̇, . . .) (Lagrangian), such that the
functional S[q] (action) would be written as an integral

S[q] =
∫

dtL. (2)

In other words, the essence of the inverse problem of the calculus of variations consists of
finding a variational principle for a given system of differential equations. This problem
has been under consideration for more than a hundred years. As early as 1887, Helmholtz
[1] presented a criterion of commutativity for second variational derivatives from which
immediately follows the necessary (and with some restrictions also sufficient) condition of
solvability of equation (1):

δgi(t)

δqj (s)
= δgj (s)

δqi(t)
. (3)

If this condition holds, the system gi(t, q
i, q̇i , . . .) = 0 is called the Lagrangian system, if

not the system is non-Lagrangian. In 1894, Darboux [2] solved the problem for the one-
dimensional case. In 1941, the case of two degrees of freedom was investigated by Douglas
[3]; in particular, he presented examples of second-order equations which cannot be obtained
from the variational principle. Afterwards, many authors (see, e.g., [6–13] and references
therein) investigated this problem for multidimensional systems.

In the present work, we consider the question of the construction of an action principle
for a given system of differential equations using the integrating multiplier method [3–9].
The integrating multiplier is a nonsingular matrix which being multiplied by a given set
of differential equations reduces this set to a standard Euler–Lagrange form. In section 2,
we present a simple derivation for the necessary and sufficient conditions for an integrating
multiplier for a system of second-order equations. We also construct the explicit form of
the Lagrangian in case an integrating multiplier exists. Then we apply our method for
investigating the inverse problem of some simple models. In particular, we construct an action
principle for multidimensional dissipative systems. We also consider an example of a linear
dynamical system whose equations of motion does not admit an integrating multiplier, and,
as a consequence, cannot be obtained from the minimum action principle.

Note that it is always possible to reduce the non-Lagrangian second-order equations of
motion to an equivalent set of first-order differential equations. From the Helmholtz criterion
(3), we find the necessary and sufficient conditions for the existence of an integrating multiplier
for such equations. It turns out that in the first-order formalism an integrating multiplier
always exists and can be constructed by means of the solution of the Cauchy problem for the
equations in question, and this is presented in section 3 and is partially based on results of the
works [10, 13]. Then we construct the action functional explicitly. Thus, we show that systems
traditionally called as non-Lagrangian are, in fact, equivalent to some first-order Lagrangian
systems. As an example, we construct a first-order action functional for any linear dynamical
system.

2. Action functional for a set of second-order equations

2.1. General consideration

Let a system with n degrees of freedom be described by a set of n second-order differential
equations of motion, solvable with respect to second-order time derivatives. Suppose such a
set has the form

q̈i − f i(t, q, q̇) = 0, i = 1, . . . , n, (4)
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where f i(t, q, q̇) are some functions of the indicated arguments, and by dots above we denote
time derivatives of the coordinates. Let us construct an action principle for this set. If (4)
cannot be directly identified with the Euler–Lagrange equations, one can find an integrating
multiplier, i.e., a nonsingular matrix hij (t, q, q̇) that being multiplied by (4)

hij [q̈j − f j (t, q, q̇)] = 0 (5)

reduces this set to the standard Euler–Lagrange form for some Lagrangian L(t, q, q̇),

∂L

∂qi
− ∂2L

∂t∂q̇i
− ∂2L

∂q̇i∂qj
q̇j − ∂2L

∂q̇i∂q̇j
q̈j = 0. (6)

In order to identify (5) with (6), we need to ensure that

∂2L

∂q̇i∂q̇j
= hij , (7)

∂L

∂qi
− ∂2L

∂t∂q̇i
− ∂2L

∂q̇i∂qj
q̇j = hijf

j . (8)

Provided that an integrating multiplier is known, equations (7) and (8) can be interpreted as a
system of equations for a Lagrange function L. We are going to solve the set of equations (7)
and (8). Its consistency conditions will give us all the necessary and sufficient conditions for
an integrating multiplier. Assuming that L is a smooth function of the indicated arguments,
the consistency condition for equation (7) imply that

hij = hji,
∂hij

∂q̇k
= ∂hkj

∂q̇i
. (9)

If (9) does hold one can solve equation (7). To this end, we remind that the general solution
of equation ∂f/∂qi = gi , provided the vector gi is a gradient, is

f (q) =
∫ 1

0
dsqigi(sq) + c,

where c is a constant. Taking the above fact into account, we obtain for L (we do not consider
global problems which can arise from nontrivial topology of the configuration space) the
following representation:

L = K(t, q, q̇) + li(t, q)q̇i + l0(t, q), (10)

where

K(t, q, q̇) =
∫ 1

0
da q̇j

[∫ 1

0
db q̇i

1hij (t, q, bq̇1)

]
q̇1=aq̇

(11)

and l0(t, q), li(t, q) are some functions of the indicated arguments. To find these functions,
we use equation (8). Substituting (10) into (8), we get

∂K

∂qi
− ∂2K

∂q̇i∂t
− ∂2K

∂q̇i∂qj
q̇j +

(
∂lj

∂qi
− ∂li

∂qj

)
q̇j − ∂li

∂t
+

∂l0

∂qi
= hijf

j . (12)

Differentiating this equation over q̇k, we obtain

∂lk

∂qi
− ∂li

∂qk
= Lik, (13)

where

Lik = ∂2K

∂q̇i∂qj
− ∂2K

∂q̇j ∂qi
+

∂hik

∂t
+ q̇j ∂hik

∂qj
+

∂

∂q̇k
(hijf

j ). (14)
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This equation is a differential equation for li . The consistency conditions of equation (13)
imply that, first of all, the symmetric part of Lik is zero, which can be written as

D̂hik +
1

2

(
hij

∂f j

∂q̇k
+ hkj

∂f j

∂q̇i

)
= 0, (15)

where

D̂ = ∂

∂t
+ q̇j ∂

∂qj
+ f j ∂

∂q̇j
.

Using (15), one can rewrite (14) as follows:

Lik = ∂2K

∂q̇i∂qk
− ∂2K

∂q̇k∂qi
+ Aik, Aik = 1

2

(
hij

∂f j

∂q̇k
− hkj

∂f j

∂q̇i

)
. (16)

Next, Lik does not depend on the velocities, i.e., ∂Lik/∂q̇l = 0, which yields

∂hkl

∂qi
− ∂hil

∂qk
= ∂

∂q̇l
Aik. (17)

And, finally, the Jacobi identity

∂Lik

∂ql
+

∂Lkl

∂qi
+

∂Lli

∂qk
= 0 ⇒ ∂Aik

∂ql
+

∂Akl

∂qi
+

∂Ali

∂qk
= 0. (18)

Provided hij obeys equations (15), (17) and (18), li can be found from equation (13). We
remind that the general solution for li of equation (13) is given by

li(t, q) =
∫ 1

0
da qkLki(t, aq) +

∂ϕ (t, q)

∂qi
, (19)

where ϕ(t, q) is an arbitrary function.
Now from equation (12) we can find l0; to this end, let us rewrite it as follows:

∂l0

∂qi
= mi, (20)

where

mi = hijf
j − ∂K

∂qi
+

∂2K

∂t∂q̇i
+ q̇j ∂2K

∂qj∂q̇i
− q̇jLij +

∂li

∂t
. (21)

The consistency conditions of (20) imply that, first, mi does not depend on the velocities, i.e.,
∂mi/∂q̇k = 0. This condition is provided by equation (15). And second, the vector mi must
be a gradient:

∂mi

∂qk
− ∂mk

∂qi
= ∂Aik

∂t
+ q̇j ∂Aik

∂qj
+

∂

∂qk
(hijf

j ) − ∂

∂qi
(hkjf

j ) = 0. (22)

Taking into account (9), (15) and (17), one gets from (22) the following algebraic condition:

hijB
j

k − hkjB
j

i = 0, (23)

where

Bi
j = 1

2

∂f i

∂q̇m

∂f m

∂q̇j
− D̂

∂f i

∂q̇j
+ 2

∂f i

∂qj
.

If hij obeys (23), then from (20) one gets

l0(t, q) =
∫ 1

0
da qkmk(t, aq) +

∂ϕ (t, q)

∂t
+ c(t), (24)

where c(t) is an arbitrary function of time.



The action principle for a system of differential equations 10075

Thus, we have proved the following statement: iff for a given set of second-order ordinary
differential equations (4) there exists a nonsingular matrix hij (t, q, q̇) that obeys equations (9),
(15), (17), (18) and (23), then this set can be obtained from the variational principle with the
Lagrangian (10), where the functions K (t, q, q̇) , li (t, q) and l0 (t, q) are defined by (11),
(19) and (24), respectively, and the functions ϕ (t, q) and c(t) are arbitrary functions of the
indicated arguments.

The arbitrariness related to the functions ϕ (t, q) and c(t) enter the Lagrangian (10) via
the total time derivative of a function F,

F = ϕ(t, q) +
∫

c(t) dt.

Note that an integrating multiplier hij , and as a consequence the Lagrange function L does
exist, but however not for any set of equations (4). In section 3, we consider an example of a
dynamical system which does not admit the existence of an integrating multiplier. However,
if it exists, it is not unique [13–19], e.g., if the matrix hij is an integrating multiplier for
a certain set (4), it is easy to see that the matrix h́ij = chij , where c �= 0 is a constant,
is an integrating multiplier as well. Therefore, the Lagrangian (10) leading to the set of
equations (4) is not unique because for this set there exist as many inequivalent Lagrangians
as integrating multipliers. Lagrangians corresponding to different integrating multipliers are
known as s-equivalent Lagrangians.

In the one-dimensional case, q̈ − f (t, q, q̇) = 0, an integrating multiplier is a non-
vanishing function h(t, q, q̇) that obeys the equation

∂h

∂t
+ q̇

∂h

∂q
+

∂

∂q̇
(f h) = 0. (25)

This is a first-order partial differential equation which obviously has a solution for any f and
initial condition h (t = 0, q, q̇) = h0 (q, q̇). As we can see, an answer to the question whether
there exists a solution of the inverse problem of the calculus of variations depends on the
number of degrees of freedom n. For n = 1, the answer is always positive, and there exist as
many inequivalent Lagrangians as functions h0 (q, q̇) of two variables. For n � 2, the answer
is generally negative.

2.2. Examples

In this section, we consider the possibility of constructing an action principle for some examples
of dynamical systems. First of all, let us consider dissipative systems. Suppose we have an
ideal system with the Lagrangian

L0 = q̇2

2
+ V (q), q = {qi}, i = 1, . . . , n. (26)

Let us consider the case when besides the potential conservative force F i = ∂V
∂qi there exist a

friction force

F i
fric = αq̇i, (27)

where α is a phenomenological friction coefficient which in general can depend on time. The
equations of motion for such a system have the form

q̈i = ∂V

∂qi
+ αq̇i . (28)

These equations are non-Lagrangian, but for this set it is possible to find an integrating
multiplier. In the simplest case, when it does not depend on coordinates and velocities, it has
the form

hij = e−2
∫

αdt h0
ij , (29)



10076 D M Gitman and V G Kupriyanov

where h0
ij is an arbitrary, symmetric, nonsingular, constant matrix commuting with the matrix

Vij = ∂2V/∂qi∂qj . Using the statement of the previous section, we obtain the following
Lagrangian:

L = 1

2
q̇ihij q̇

j +
∫ 1

0
qihij

∂V (s�q)

∂qj
ds. (30)

If one sets h0
ij = δij , the Lagrangian (30) can be rewritten as

L = e−2
∫

αdtL0. (31)

Note that once the friction coefficient goes to zero, the Lagrangian (31) transforms into the
initial Lagrangian (26).

Let us now consider the case when the potential in the initial Lagrangian is linear in
velocities. For simplicity, we consider the two-dimensional case:

L0 = 1
2 (ẋ2 + ẏ2 + β(ẋy − ẏx)). (32)

Let us consider this system in the presence of the dissipative force (30). The equations of
motion will have the form

ẍ = αẋ − βẏ, ÿ = βẋ + αẏ. (33)

As was shown in [12], this system describes a moving charged particle in a uniform magnetic
field with radiation friction. In this case,

Bi
j =

(
α2 − β2 −2αβ

2αβ α2 − β2

)
and from equation (23) one immediately gets

tr(hij ) = h11 + h22 = 0. (34)

It is then easy to find that the general solution of equations (9), (15), (17) and (18) is defined
by an arbitrary function φ (ζ, η) and has the form

hij =
(

F + F̄ i
(
F − F̄

)
i
(
F − F̄

) − (
F + F̄

)) , (35)

where F = φ(ξ̇e−γ t , ξ̇ − αξ) e−γ t , ξ = x + iy, γ = α + iβ and the bar denotes a complex
conjugation.

The simplest real solution can be found if we put φ = 1/ζ . We have

hij = 2

ẋ2 + ẏ2

(
ẋ ẏ

ẏ −ẋ

)
. (36)

Using formulae (10), (11), (19) and (24), we find the following Lagrangian:

L = 1

2
ẋ ln(ẋ2 + ẏ2) + ẏ arctan

(
ẋ

ẏ

)
+ αx − βy. (37)

The corresponding Euler–Lagrange equations

ẍẋ + ÿẏ

ẋ2 + ẏ2
= α,

ẍẋ − ÿẏ

ẋ2 + ẏ2
= β (38)

are equivalent to the initial ones (33), with the exception of the point ẋ = ẏ = 0. Thus, we can
see that in this case the inverse problem of the calculus of variations is solvable. Unfortunately,
neither the Lagrangian (37) nor any other Lagrangian constructed by the matrix (35) in the
limit α → 0 transforms into the initial Lagrangian (32), modulo a total time derivative. This
is because, according to the algebraic condition (34), the trace of the Hessian matrix of any
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Lagrangian for the set of equations (33) must be equal to zero and this property holds true after
the limit α → 0 is taken. On the other hand, the trace of the Hessian matrix of the Lagrangian
L0 in (32) is equal to 2. This contradiction proves the statement.

Finally, we consider the example of a dynamical system for which an integrating multiplier
and, consequently, the possibility of the Lagrangian description does not exist. Douglas [3]
showed that the set of second-order equations

ẍ + ẏ = 0, ÿ + y = 0

does not admit an integrating multiplier. Let us prove this. To this end, let us assume the
opposite, namely, let there be a non-degenerate matrix hij that obeys equations (9), (15), (17),
(18) and (23). Then from the algebraic equation (23) it follows that hij must be diagonal
(h12 = h21 = 0), since in this case

Bi
j =

(
0 0
0 2

)
.

Then, from condition (15) we immediately obtain h11 = 0, and arrive at a contradiction,
det hij = 0.

Thus, we can see that an action functional in the second-order formalism cannot be
constructed for some sets of differential equations. Nevertheless, as we show in the following
section, it is always possible to construct an action principle for the equivalent set of first-order
equations.

3. An action principle in the first-order form

Let a system with n degrees of freedom be described by a set of n non-Lagrangian second-order
differential equations of motion. To construct an action principle, we replace these equations
(which is always possible to do by introducing n additional variables, e.g., pi = q̇i) by an
equivalent set of 2n first-order differential equations, solvable with respect to time derivatives.
Suppose such a set has the form

ẋα = f α(t, x), xα = (qi, pi), α = 1, . . . , 2n, (39)

where f α(t, x) are some functions of the indicated arguments and by dots above we denote
time derivatives of coordinates. Let us construct an action principle for this set. If (39)
cannot be directly identified with the Euler–Lagrange equations, then one can find an
integrating multiplier, i.e., a nonsingular matrix �3 which reduces the initial set of differential
equations (39) to a variational derivative:

gα[t] = �αβ(ẋβ − f β(t, x)) = δS

δxα
= 0. (40)

Since gα[t] is a variational derivative it must obey the Helmholtz criterion [1]
δgα[t]

δxβ(s)
= δgβ[s]

δxα(t)
. (41)

We will use this condition to find an integrating multiplier �. In the general case one can
assume that � depends on time t, coordinates xα and time derivatives up to order m (m is a
natural number), i.e., gα[t] = gα(t, x, . . . , x(m)). Having in mind this form of gα , one rewrites
(41) as

m∑
i=0

∂gα[t]

∂xβ(i)
δ(i)(t − s) =

m∑
j=0

∂gβ[s]

∂xα(j)
δ(j)(s − t), (42)

3 We denote by � the integrating multiplier for the first-order equations.
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since

δ

δxβ(s)
xα(k) (t) =

(
d

dt

)k
δxα(t)

δxβ(s)
= δα

βδ(k)(t − s), k = 0, 1, . . . .

Differentiating the identity f (t)δ(t − s) = f (s) δ(s − t) over t, one finds

f (s)δ(k)(s − t) = (−1)k
k∑

l=0

Ck
l f

(l)(t)δ(k−l)(t − s), Ck
l = k!

(k − l)!
. (43)

Using (43), we rewrite (41) as
m∑

i=0

∂gα[t]

∂xβ(i)
δ(i)(t − s) =

m∑
j=0

(−1)j
j∑

l=0

C
j

l

[(
d

dt

)l
∂gβ[t]

∂xα(j)

]
δ(j−l)(t − s). (44)

Comparing in (44) the coefficient for δ(k)(t − s), one gets equations for gα(t, x, . . . , x(m)).
When k = 0, we have

∂gα

∂xβ
−

m∑
j=0

(−1)j
(

d

dt

)l
∂gβ

∂xα(j)
= 0. (45)

Since gα[t] depends only on derivatives up to order m, the coefficient of the higher derivative
xα(2m) in equation (45) must vanish. This coefficient is (−1)m∂2gβ/∂xα(m)∂xγ (m), which
means that gα[t] must be linear on the derivatives of order m, i.e.,

gα[t] = aαβ(t, x, . . . , x(m−1))xβ(m) + bα(t, x, . . . , x(m−1)),

where aαβ and bα are some functions. Since � is a nonsingular matrix, (40) should be a system
of first-order equations, i.e., we have m = 1 and � = �(t, x).

Now comparing the coefficient of δ(1)(t − s) in (44), we obtain

�αβ = −�βα. (46)

Then from (45), we have

∂β(�αγ f γ ) − ∂α(�βγ f γ ) + ∂t�αβ + ẋγ (∂β�αγ − ∂α�βγ + ∂γ �βα) = 0.

Since � does not depend on ẋ, one gets the following equations for �:

∂α�βγ + ∂β�γα + ∂γ �αβ = 0 (47)

and

∂t�αβ + £f �αβ = 0, (48)

where £f �αβ is the Lie derivative of �αβ along the vector field f γ and ∂α = ∂/∂xα, ∂t = ∂/∂t.

Thus, we see that for a set of first-order equations an integrating multiplier is a nonsingular
matrix which depends only on time t and coordinates xα , and obeys the conditions (46)–(48).

Let us analyse equations (46)–(48) for the matrix �αβ following our work [13]. It is
known that the general solution �αβ of equation (48) can be constructed with the help of a
solution of the Cauchy problem for equations (39). Suppose that such a solution is known:

xα = ϕα(t, x(0)), xα
(0) = ϕα(0, x(0)) (49)

is a solution of equations (39) for any x(0) = (
xα

(0)

)
and χα(t, x) is the inverse function with

respect to ϕα(t, x(0)), i.e.,

xα = ϕα(t, x(0)) �⇒ xα
(0) = χα(t, x), xα ≡ ϕα(t, χα), ∂αχγ |t=0 = δα

γ . (50)

Then

�αβ(t, x) = ∂αχγ �
(0)
γ δ (χ) ∂βχδ, (51)
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where the matrix �
(0)
αβ is the initial condition for �αβ ,

�αβ(t, x)|t=0 = �
(0)
αβ (x).

One can see that by choosing the matrix �
(0)
αβ (x) to be nonsingular and subject to the Jacobi

identity, we guarantee the fulfilment of the same conditions for the complete matrix �αβ(t, x),
since components of the latter are given by a change of variables (51).

Thus, we see that for any set of first-order equations (39), an integrating multiplier always
exists, i.e., there always exists a Lagrangian L(t, x, ẋ) which has the set of equations

�αβ(ẋβ − f β(t, x)) = 0 (52)

as its Euler–Lagrange equations. It is easy to see that this Lagrangian is linear in the first-
order derivative ẋα since equations (52) do not contain second-order derivatives, i.e., the
corresponding term ∂2L/∂ẋα∂ẋβ vanishes. The general form of this Lagrangian is

L = Jαẋα − H, (53)

where Jα = Jα(t, x) and H = H(t, x) are some functions of the indicated arguments. The
Euler–Lagrange equations corresponding to (53) are

δS

δx
= ∂L

∂x
− d

dt

∂L

∂ẋ
= 0 �⇒ −∂αH − ∂tJα + (∂αJβ − ∂βJα)ẋβ = 0. (54)

Comparing equations (52) and (54), one gets4

�αβ = ∂αJβ − ∂βJα, (55)

and

�αβf β − ∂tJα = ∂αH. (56)

The functions Jα and H can be found from conditions (55) and (56) if the matrix �αβ is given.
One can see that consistency conditions for these equations exactly give us equations (46)
and (48) for an integrating multiplier �αβ . We recall that the general solution Jα(t, x) of
equation (55), provided that �αβ is a given antisymmetric matrix that obeys the Jacobi identity,
is given by

Jα(t, x) =
∫ 1

0
xβ�βα(t, sx)s ds + ∂αϕ(t, x), (57)

where ϕ(x) is an arbitrary function. Substituting (51) into (57), we obtain

Jα(t, y) =
∫ 1

0
yβ

[
∂αχγ �

(0)
γ δ (χ)∂βχδ

]∣∣
x=sy

sds + ∂αϕ(t, y). (58)

Equation (58) describes all the ambiguity (an arbitrary symplectic matrix �
(0)
γ δ and an arbitrary

function ϕ(t, x)) in constructing the term Jα(t, x) of the Lagrange function (53).
To restore the term H in the Lagrange function (53), we need to solve equation (56) with

respect to H. To this end, we recall that the general solution of the equation ∂if = gi , provided
a vector gi is a gradient, is given by

f (x) =
∫ 1

0
dsxigi(sx) + c,

4 As a more abstract argument in favour of such a form of � we invoke the Poincare lemma, according to which any
closed form is locally exact, but here we do not treat the global problems which can arise from the nontrivial topology
of xα-space.
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where c is a constant. Taking the above into account, we obtain for H the following
representation:

H(t, x) =
∫ 1

0
ds xβ [�βα(t, sx)f α(t, sx) − ∂tJβ(t, sx)] + c(t), (59)

where c(t) is an arbitrary function of time and �βα and Jβ are given by (51) and (58),
respectively. All the arbitrariness in constructing H is thus due to the arbitrary symplectic
matrix �

(0)
γ δ and the arbitrary functions ϕ(t, x) entering the expressions for �βα and Jβ and

the arbitrary functions c(t).

We can see that there exists a family of Lagrangians (53) which lead to the same equations
of motion (39). It is easy to see that actions with the same �

(0)
γ δ but different functions ϕ(t, x)

and c(t) differ by a total time derivative (we call such a difference trivial). A difference in
Lagrange functions related to different choice of symplectic matrices �

(0)
αβ is not trivial. The

corresponding Lagrangians are known as s-equivalent Lagrangians.
As an example, let us consider a theory with equations of motion of the form5

ẋ = A(t)x + j (t). (60)

An action principle for such a theory can be constructed (see [13]) following the above
described manner.

The solution of the Cauchy problem for equations (60) reads

x(t) = (t)x(0) + γ (t), (61)

where the matrix (t) is the fundamental solution of (60), i.e.,

̇ = A, (0) = 1 (62)

and γ (t) is a partial solution of (60). Then following (51), we construct the matrix � 6,

� = �T �(0)�, � = −1 (63)

and find the functions J and H according to (58) and (59),

J = 1
2x�, H = 1

2xBx − Cx, (64)

where

B = 1
2 (�A − AT�), C = �j. (65)

Thus, the action functional for the general quadratic theory is

S[x] = 1

2

∫
dt (x�ẋ − xBx − 2Cx) . (66)

In conclusion, we note that it is always possible to construct a Lagrangian action for any set
of non-Lagrangian equations in an extended configuration space following a simple idea first
proposed by Bateman [20]. Such a Lagrangian has the form of a sum of the initial equations of
motion being multiplied by the corresponding Lagrangian multipliers and new variables. The
Euler–Lagrange equations for such an action contain besides the initial equations some new
equations of motion for the Lagrange multipliers. In such an approach, one has to think how
to interpret the new variables already on the classical level. Additional difficulties (indefinite
metric) can appear in course of the quantization [21–24].

5 Here we use matrix notation, x = (xα), A(t) = (A(t)αβ), j (t) = (j (t)α), α, β = 1, . . . , 2n.
6 For simplicity we choose the matrix �(0) to be a constant nonsingular antisymmetric matrix.



The action principle for a system of differential equations 10081

Acknowledgments

Gitman is grateful to the Brazilian foundations FAPESP and CNPq for permanent support;
Kupriyanov thanks FAPESP for support.

References

[1] von Helmholtz H 1887 J. Reine Angew. Math. 100 137
[2] Darboux G 1894 Lesons sur la Theorie Generale des Surfaces (Paris: Gauther-Villars)
[3] Douglas J 1941 Trans. Am. Math. Soc. 50 71
[4] Havas P 1973 Actra. Phys. Aust. 38 145
[5] Santilli R 1977 Ann. Phys., NY 103 354
[6] Sarlet W 1978 J. Math. Phys. 19 1049
[7] Dodonov V V, Man’ko V I and Skarzhinsky V D 1978 Arbitrariness in the choice of action and quantization of

the given classical equations of motion Preprint 78-216 (P. N. Lebedev Physical Institute)
[8] Okubo S 1980 Phys. Rev. D 22 919
[9] Sarlet W 1982 J. Phys. A: Math. Gen. 15 1503

[10] Henneaux M 1982 Ann. Phys. 140 45
[11] Morandi G, Ferrario C, Vecchio G Lo, Marmo G and Rubano C 1990 Phys. Rep. 188 147
[12] Kupriyanov V G 2006 Int. J. Theor. Phys. 45 1129
[13] Gitman D M and Kupriyanov V G 2007 Eur. Phys. J. C 50 691–700
[14] Balachandran A P, Govindrajan T R and Vijayalakshimi B 1978 Phys. Rev. D 18 1950
[15] Hojman S and Urrutia L 1981 J. Math. Phys. 22 1896
[16] Hojman S and Handerston H 1981 J. Math. Phys. 22 1414
[17] Henneaux M and Sheplley L 1982 J. Math. Phys. 23 2101
[18] Cislo J and Lopuzanski J 2001 J. Math. Phys. 42 5163
[19] Tempesta P, Alfinito E, Leo R and Soliani G 2002 J. Math. Phys. 43 3583
[20] Bateman H 1931 Phys. Rev. 38 815
[21] Dekker H 1981 Phys. Rep. 80 1
[22] Celeghini E, Rasetti M and Vitello G 1992 Ann. Phys. 215 156
[23] Banerjee R and Mukherjee P 2002 J. Phys. A: Math. Gen. 35 5591
[24] Blasone M and Jizba P 2004 Ann. Phys. 312 354

http://dx.doi.org/10.2307/1989912
http://dx.doi.org/10.1016/S0003-4916(97)90004-X
http://dx.doi.org/10.1063/1.523767
http://dx.doi.org/10.1103/PhysRevD.22.919
http://dx.doi.org/10.1088/0305-4470/15/5/013
http://dx.doi.org/10.1016/0003-4916(82)90334-7
http://dx.doi.org/10.1016/0370-1573(90)90137-Q
http://dx.doi.org/10.1007/s10773-006-9112-5
http://dx.doi.org/10.1140/epjc/s10052-007-0230-x
http://dx.doi.org/10.1103/PhysRevD.18.1950
http://dx.doi.org/10.1063/1.525162
http://dx.doi.org/10.1063/1.525062
http://dx.doi.org/10.1063/1.525252
http://dx.doi.org/10.1063/1.1405125
http://dx.doi.org/10.1063/1.1479300
http://dx.doi.org/10.1103/PhysRev.38.815
http://dx.doi.org/10.1016/0370-1573(81)90033-8
http://dx.doi.org/10.1016/0003-4916(92)90302-3
http://dx.doi.org/10.1088/0305-4470/35/27/305
http://dx.doi.org/10.1016/j.aop.2004.01.008

	1. Introduction
	2. Action functional for a set of second-order equations
	2.1. General consideration
	2.2. Examples

	3. An action principle in the first-order form
	Acknowledgments
	References

